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Abstract

The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine

learning models can support decision making in healthcare by assessing fatality risk in

patients that do not yet show severe signs of COVID-19. Most predictive models rely on

static demographic features and clinical values obtained upon hospitalization. However,
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time-dependent biomarkers associated with COVID-19 severity, such as antibody titers,

can substantially contribute to the development of more accurate outcome models. Here we

show that models trained on immune biomarkers, longitudinally monitored throughout hospi-

talization, predicted mortality and were more accurate than models based on demographic

and clinical data upon hospital admission. Our best-performing predictive models were

based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell

(WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive pro-

tein and blood urea nitrogen levels, were found to correlate with severity of disease and mor-

tality in a time-dependent manner. Shapley additive explanations of our model revealed the

higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and

showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate

that the kinetics of immune biomarkers can inform clinical models to serve as a powerful

monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring

the importance of contextualizing clinical parameters according to their time post-symptom

onset.

Author summary

SARS-CoV-2 infected patients present with diverse clinical profiles, ranging from asymp-

tomatic to severe respiratory failure and death. Early detection of high-risk patients is fun-

damental to tailor therapeutic interventions that anticipate disease progression and

prevent poor outcomes. Machine learning can assist health workers in triaging patients by

bringing together multiple factors, describing the patient’s health, into a single model

capable of predicting the most likely outcome. This can be particularly relevant in surge

settings where clinical resources must be efficiently utilized. To date, most models predict

COVID-19 outcomes using patient data obtained upon hospital admission. However,

clinical data obtained longitudinally during hospitalization can provide a wealth of infor-

mation to build more precise models. With this in mind, we monitored disease progres-

sion in 147 COVID-19 patients during hospitalization by frequently collecting clinical

parameters. We show that models trained on longitudinally monitored immune biomark-

ers predicted mortality and were more accurate than models based on demographic and

clinical data obtained upon hospital admission. Our work encourages the development of

a broader computational framework that combines patient clinical data from hospital

admission with longitudinally monitored biomarkers collected throughout the hospitali-

zation to better assist health care workers with daily prognostication of COVID-19

patients.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human pathogenic

virus that has rapidly spread worldwide to cause the devastating coronavirus (COVID-19) pan-

demic. The first United States (U.S) confirmed cases were reported in Washington state in Jan-

uary 2020 [1]. Since then, the virus has claimed the lives of 755,000 people in the U.S.,

including 56,300 in New York State (Nov 2021) (https://covid.cdc.gov/covid-data-tracker). In

comparison to the 2003 SARS-CoV-1 outbreak, SARS-CoV-2 has a 10–20% higher infectivity
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and transmissibility rate with a peak of viral shedding occurring during the asymptomatic

incubation period (4–5 days), making SARS-CoV-2 considerably harder to detect and control

than SARS-CoV-1 [2,3]. SARS-CoV-2 infected patients present a heterogeneous clinical profile

that ranges from mild flu-like symptoms, where infection is effectively controlled, to severe

respiratory failure and death, which is linked to high levels of inflammation [4]. A variety of

factors are associated with severity of disease and mortality in COVID-19 patients, including

demographics (e.g. age, sex), comorbidities (e.g. diabetes mellitus, hypertension, obesity), eth-

nicity (e.g. Black and minority ethnicity) and clinical values (e.g. body mass index (BMI) and

levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH)) [4–14]. Multiple studies

suggest that the dysregulated immune response is one of the main factors underlying disease

severity and fatality risk [2,15–25]. The immune response against severe SARS-CoV-2 infec-

tion is characterized by a combination of delayed type I/III interferon response and produc-

tion of proinflammatory cytokines that recruits effector cells [2]. Patients with severe COVID-

19 frequently demonstrate lymphopenia, eosinopenia and elevated levels of white blood cells

(WBC) in the blood, in particular neutrophils, and differences in the humoral response [17–

25]. Elevated anti-SARS-CoV-2 IgG titers correlates with length of hospitalization and is also

associated with disease severity in a time dependent manner as shown by the delayed IgG

response observed in deceased patients [22,23,25]. While further studies are required, current

data suggests an intrinsic relationship between disease progression, severity of disease and the

immune response. Therefore, characterizing the immune response over time can identify

time-dependent immune features that would inform prognosis, the use of therapeutics such as

COVID-19 convalescent plasma [26] or monoclonal antibodies against SARS-CoV-2 [22,27].

Most predictive models of SARS-CoV-2 infection outcomes incorporate static features, includ-

ing demographics, comorbidities and single point clinical values from the hospital admission

labs [8–14]. Unlike admission clinical and laboratory values, longitudinal information mirror-

ing the evolution of disease during hospitalization might be better suited to predict disease out-

come far downstream [28]. Studies on longitudinal data have mostly focused on trajectory

profiling, unraveling valuable time-dependent associations between biomarkers and disease

severity [29–33]. However, integration of longitudinal clinical data within a machine learning

framework has rarely been reported [28,34]. Recently, Chen et al. integrated up to seven longi-

tudinally monitored clinical parameters (LDH, lymphocytes counts, procalcitonin, D-dimer,

CRP, respiratory rate and WBC counts) into a logistic regression model to predict mortality

on a daily basis [28]. Model evaluation showed an area under the curve (AUC) of 75%-96%

and 69%-79% when predicting mortality 1–5 days and 6–10 days before it occurs respectively.

Assembly of longitudinal datasets is a challenging task that requires periodical sampling of

patients over an extended period of time. Consequently, analysis of longitudinal data has only

recently begun to emerge [35]. In order to bypass this limitation, mathematical representations

of the immunopathology of COVID-19 and development of virtual patient cohorts were devel-

oped, elucidating potential relationships between immune response and disease severity

[35,36].

Here we conducted a longitudinal study, relative to post-symptom onset (PSO), of anti-

spike protein antibody levels and other immune and non-immune biomarkers in COVID-19

hospitalized patients at a single day resolution (147 patients; 1,954 blood samples spanning up

to 60 days PSO) in relation to disease outcomes. We input this data into a machine learning

framework to predict clinical outcomes on a day-by-day basis. Machine learning models

trained on longitudinally monitored immune features outperformed models trained on static

features obtained upon admission when predicting fatal outcomes. Day-to-day statistics

revealed temporal associations between immune features and severity of disease. In addition,

we analyzed how input features contributed to the model’s prediction using Shapley value
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analysis to further highlight these associations. Overall, our results suggest that longitudinal

monitoring of immune markers can be a powerful tool for tracking the progress of disease

course and identifying high mortality risk patients in hospitalized patients with COVID-19.

Results

Demographics and clinical characteristics in a hospitalized COVID-19

cohort

We conducted a longitudinal study of 147 hospitalized patients with COVID-19 at Montefiore

Medical Center (MMC), located in the Bronx, New York (Fig 1A). Prior to hospitalization,

the majority of patients resided at home or in nursing/rehabilitation centers from neighbor-

hoods near MMC (Fig 1B). All 147 patients were admitted with a diagnosis of COVID-19 and

had a positive real-time reverse transcription polymerase chain reaction (RT-qPCR) for

Fig 1. Overview of patient cohort by sampling strategy, residence and demographic associations with COVID-19 disease severity. (A) Heatmap describing the

number of biomarkers (y-axis; up to eight different biomarkers, see materials and methods) measured for any given patient (x-axis; described by an internal identifier)

and day PSO over course of hospitalization (patients = 147, blood samples analyzed = 1,954). (B) Choropleth map of the Bronx zip codes colored by the number of

patients enrolled in the study. The red pin denotes the location of Montefiore Medical Center. (C-D) Box plot of patient’s age (C) and Body Mass Index (D) by oxygen

supplementation or non-survival outcome (Blue: Mild, green: moderate, orange: severe, red: non-survival). Boxes extend from the 25th to 75th percentiles, the whiskers

represent the minimum and maximum values and the middle line corresponds to the median. Statistical significance is denoted with asterisks (Mann-Whitney;
�p< 0.05, ��p< 0.01). We define “day post-symptom onset” (PSO) as the day relative to the patient-reported onset of symptoms. We downloaded the raw data to make

the map from NYC Open Data (https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm) and plotted it using pandas and geopands.

https://doi.org/10.1371/journal.pcbi.1009778.g001
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SARS-CoV-2 from nasopharyngeal samples between March 1st and June 1st, 2020. Patients

were admitted into the hospital at different days relative to the onset of symptoms (median

admission day PSO = 7; IQR, 3–9 days) and had different lengths of stay (LOS) (median

LOS = 13 days, IQR, 9–21 days). Blood samples from each patient were obtained over the course

of the hospitalization. Whenever possible, up to eight different biomarkers were measured in

any given blood sample (Fig 1A): anti-SARS CoV-2 spike IgG antibody titers, total WBC, lym-

phocyte, neutrophil, eosinophil, platelet counts, CRP and blood urea nitrogen (BUN). We num-

bered each day during hospitalization relative to patient-reported PSO and data were analyzed

in relation to this day (e.g. when performing day-to-day statistics only patient data obtained the

same day PSO were considered). Patients had a median age of 64 years (IQR, 54–72.5), median

BMI of 28.4 (IQR, 25.1–33.4), with 33.6% women (Table 1). Disease severity was defined by

clinical outcome and maximal level of oxygen supplementation received during hospitalization

in survivors is as followed: 1) Mild: Room air (no oxygen supplementation), 2) Moderate (nasal

cannula, 1–4 L/min to maintain SpO2>92%—or non-rebreather mask), 3) Severe (non-inva-

sive ventilation, high-flow oxygen,�6 L/min to maintain SpO2>92%, or invasive mechanical

ventilation 4) Non-survival (deceased during the course of hospitalization) (Table 1) (29). Indi-

viduals defined with severe illness had lower median age (59 years) relative to the moderate and

non-survival groups (65 years for both groups) (Fig 1C) and a higher median BMI (29.4) than

the moderate category individuals (27.8) (Fig 1D). Other common comorbidities observed in

the cohort included cardiovascular disease (68.5%), diabetes mellitus (39.6%) and chronic kid-

ney disease (26.9%) (Tables 1 and S1). Twenty six percent of patients did not survive. Median

day of death from symptom onset was 21 days (IQR, 19–34 days).

Sustained anti-spike IgG antibody response over time correlates with

clinical outcome

To measure SARS-CoV-2 antibody titers we used a robust ELISA-based detection serological

assay that confers high sensitivity and specificity [37] with a recombinant stabilized spike ecto-

domain as the antigen [38,39]. From each individual patient plasma, ELISA-dilution curves

were performed from samples collected every two days during the first 10 days of hospitaliza-

tion and every 3 days afterwards (Fig 2A–2C). The half maximal effective IgG concentration

(EC50) was computed from each ELISA-dilution curve and averaged on a daily basis using a

rolling five-day window in order to minimize day-to-day fluctuations (see materials and meth-

ods). Then, we described the evolution of IgG titers during hospitalization as a single trajectory

for each patient (Figs 2D and S1). A positive titer was defined as a -log10(EC50) above

-log10(2.5) as previously reported [40]. Following this, we categorized the sustained level of

SARS CoV-2 IgG for each patient into High, Medium or Low groups using the daily EC50 val-

ues. These categories were based on the maximal and consecutive EC50 titers (maintained

for� 5 days of hospitalization) and the range delimited by the 25th and 75th percentiles of all

EC50 values. Patients hospitalized for< 7 days were excluded (19 out of 147 patients; see mate-

rials and methods) due to an insufficient number of time points to categorize their sustained

IgG response. Out of the 130 remaining patients, 21 patients did not have a sustained IgG

response reported since their IgG titers fluctuated between the established ranges during hos-

pitalization (intermediate category, Table 2). Patients with IgG titers > 75th percentile, for 5

days or more, were classified as High sustained IgG; and patients with maximum sustained

IgG titers between the 25th of 75th percentiles or below the 25th percentile for five consecutive

days or more were classified as Medium or Low sustained IgG respectively (Table 2).

Trajectory plots show that IgG titers increased within the first three weeks PSO and then

remain stable throughout the length of hospitalization (Figs 2D and S1). Sustained IgG
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response was associated with LOS, as High sustained IgG group tend to stay longer in hospital

(Kruskal-Wallis p = 1.2 x10-3, Table 2). Unlike patients with a sustained Medium and High

IgG response, patients with a Low sustained IgG response had negative or very low levels of

IgG against the spike and nucleocapsid proteins (S2 Fig). Half (50.8%) of the 130 patients

mounted a Medium IgG response, plateauing after 15 days PSO and 34.6% of the cohort had a

High sustained IgG titer.

Table 1. Patient Characteristics. Patients are grouped by outcome; survivors disease severity is categorized based on maximal oxygen supplementation during hospitali-

zation. Mild: room air; Moderate: nasal cannula, or non-rebreather; Severe: high flow oxygen therapy or mechanical ventilation. BMI reported as kg/m2.a �one subject in

this category was homeless.

All Patients Mild Moderate Severe Non-survivors

(N = 147) (N = 9) (N = 59) (N = 41) (N = 38)

Baseline and demographic

Age-no. (IQR)

All, yrs, median (IQR) 64 (54–73) 55 (50–64) 65 (58–73) 56 (43–68) 65 (58.7–77)

<40 yrs 30 (19.5–35) 36 (N/A) 17 (7–30) 30.5 (22.8–35.5) 29 (N/A)

40–64 yrs 56 (49–61) 53 (49.5–55) 58 (51–62) 52 (45.5–59) 58 (55–61)

�65 yrs 72 (68–78) 64 (62–73.5) 72 (68–78) 70 (68–80.3) 74.5 (68–80.3)

Male-no./total no. (%) 99 (67.3) 7 (77.8) 37 (62.7) 27 (65.9) 27 (71.1)

BMI—median (IQR) 28.3 (25.1–31.7) 25.1 (21.3–30.4) 27.7 (23.9–30.9) 29.4 (26.4–35.7) 29.4 (24.4–33.3)

Ethnicity-no. (%)

Hispanic 61 (41.5) 2 (22.2) 20 (33.9) 22 (53.7) 17 (44.7)

Not Hispanic 75 (51.0) 7 (77.8) 32 (54.2) 17 (41.5) 19 (50)

Unknown 11 (7.5) 0 (0) 7 (11.9) 2 (4.9) 2 (5.3)

Race-no. (%)

Black 53 (36.1) 7 (77.8) 21 (35.6) 14 (34.1) 11 (28.9)

White 22 (15.0) 2 (22.2) 6 (10.2) 8 (19.5) 6 (15.8)

Other 58 (39.5) 0 (0) 24 (40.7) 17 (41.5) 17 (44.7)

Unknown 14 (9.5) 0 (0) 8 (13.6) 2 (4.9) 4 (10.5)

Comorbidities-no. (%)

Hypertension 101 (68.7) 6 (66.7) 41 (69.5) 24 (58.5) 30 (78.9)

Diabetes 59 (40.1) 4 (4404) 23 (39) 18 (43.9) 14 (36.8)

Pulmonary Disease 31 (21.1) 2 (22.2) 12 (20.3) 7 (17.1) 10 (23.3)

Heart Disease 36 (24.5) 2 (22.2) 13 (22.0) 6 (14.6) 15 (39.5)

Chronic Kidney Disease 40 (27.2) 2 (22.2) 17 (28.8) 6 (14.6) 15 (39.5)

Hemodialysis 16 (10.9) 1 (11.1) 5 (8.5) 1 (2.4) 9 (23.7)

Immunocompromised 26 (17.7) 3 (33.3) 9 (15.3) 5 (12.2) 9 (23.7)

History of smoking 60 (40.8) 4 (44.4) 32 (54.2) 10 (24.4) 14 (36.8)

Residency-no. (%)

Home 113 (76.9) 6 (66.7) 44 (74.6)� 33 (80.5) 30 (78.9)

Nursing home 34 (23.1) 3 (33.3) 15 (25.4) 8 (19.5) 8 (21.1)

Length of Stay-days

Median (IQR) 13 (9–21) 7 (6.5–9.5) 9 (7–15) 19 (13–31) 14.5 (12–24.3)

Sustained IgG-no. (%)

Poor coverage 17 (11.6) 4 (44.4) 11 (18.6) 2 (4.9) 0 (0)

Low 15 (10.2) 1 (11.1) 5 (8.5) 2 (4.9) 7 (18.4)

Medium 59 (40.1) 4 (44.1) 25 (42.4) 13 (31.7) 17 (44.7)

High 35 (23.8) 0 (0) 9 (15.3) 18 (43.9) 8 (21.1)

Intermediate 21 (14.3) 0 (0) 9 (15.3) 6 (14.6) 6 (15.8)

https://doi.org/10.1371/journal.pcbi.1009778.t001
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We did not find a significant association between the category of sustained IgG response

and mortality (Chi-square p = 0.24). However, the lack of significance could be influenced by

the small dataset (only 15 hospitalized patients had a Low sustained IgG response, where
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Fig 2. Sustained IgG titers are associated with severity of disease. (A-C) SARS-CoV-2 spike IgG ELISA titration of plasma samples over the course of

hospitalization for representative patients showing three distinct evolutions of IgG titers. ELISA experiments were carried out as two experimental replicates,

each consisting of two technical replicates. (A) Representative patient with a sustained low IgG titer during hospitalization. (B) Representative patient with a

sustained medium IgG titer during hospitalization. (C) Representative patient with a sustained high IgG titer during hospitalization. (D) EC50 titers over time

were used to categorize patients with� 7 days of hospitalization (n = 130) into three categories that describe the sustained IgG titer: i) low (grey), medium

(blue) and high (red). Categorized patients are required to show daily IgG EC50 titers for at least for 5 consecutive days within the range delimited by the 25th

and 75th EC50 percentiles (sustained low IgG: -log10(EC50)� 25th perc; sustained medium IgG: 25th perc> -log10(EC50)� 75th perc; and sustained high IgG:

-log10(EC50)> 75th perc; see materials and methods and S1 Fig). (A-D) We define “day post-symptom onset" (PSO) as the day relative to the patient-reported

onset of symptoms. (E) Mosaic plot describing the distribution of severity of COVID-19 relative to the sustained IgG titer class. (F) Distribution of sustained

IgG titers relative to the severity of disease among survivors (77 patients), patients with mild and moderate disease were merged into a single category (Chi-

square, ��p< 0.01).

https://doi.org/10.1371/journal.pcbi.1009778.g002
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46.7% of them died, Fig 2E). In contrast, we found a strong association between severity of dis-

ease and the sustained IgG response categories (Chi-square square p<0.01) among survivors:

only 20% of patients with mild-to-moderate disease show a sustained High IgG response, as

compared to 55% of patients with severe disease (Fig 2F).

Trajectory analyses reveal different IgG kinetics between survivors and

non-survivors

Sustained Low, Medium and High IgG response categories describe the maximal IgG titers

over the entire length of hospitalization but do not provide information about the kinetics of

the IgG response. Next, we tested the association of admission IgG titers and the kinetics of

IgG response with disease severity (mild, moderate, severe and non-survival).

Low IgG titers early PSO and high IgG titers later PSO are associated with more severe

disease. There was no association of hospital admission IgG titers or serostatus with disease

severity (S3 Fig). However, when comparing median IgG titers relative to the onset of symp-

toms we observed two time windows where IgG titers are associated with disease severity (Fig

3A). First, early PSO (days 2–11) non-survivors have lower IgG titers than survivors (Mann-

Whitney p< 0.05; Figs 3A and 3B and S4). Survivors showed an early median IgG titer near or

above the seroconversion threshold (-log10(EC50) = 2.5) during the first week PSO whereas

most non-survivors seroconverted during the second week (Fig 3A). Later PSO, patients with

severe disease and non-survivors had higher median IgG titer than patients with moderate dis-

ease severity (Fig 3A). Day-to-day statistics on patients grouped by maximal oxygenation sup-

plementation shows that during this late time window (comprising days 18 to 23) patients

receiving oxygenation via nasal cannula consistently showed lower IgG titers than non-survi-

vors and patients with more severe disease (Figs 3C and S5).

Non-survivors have a delayed IgG response PSO. Patients with mild disease severity

showed minimal variation in titers throughout hospitalization with a median IgG titer at or

above the positive threshold during the 1st week PSO (Fig 3A). In contrast, IgG titers increased

between the 1st and 3rd week PSO in patients with moderate and severe disease and non-sur-

vivors. When comparing the date at which the maximal titers are reached we observed that

non-survivors tend to reach a plateau later than survivors (IQR 9–16 days and 12–19 days

respectively; Mann-Whitney p = 1.2x10-2, Figs 3A and S6). Thus, survivors were more likely to

have higher titers, be seropositive and reach a plateau early PSO compared to non survivors.

IgG titers are associated with ethnicity

We determined if there was a temporal association between IgG titers and race and ethnicity

over time. Although patients of Black race tend to reach maximum IgG titers a few days

earlier than White patients (S7A Fig, IQR 9–14 days and 10–20 days respectively), those

differences were not statistically significant (Mann-Whitney p = 0.14). Similarly, we found no

significant association between severity of the disease (or sustained IgG response) and race

Table 2. Length of hospitalization is associated with sustained IgG titer against SARS-CoV-2 spike protein. 130 patients out of 147 (patients with less than 7 days of

hospitalization were excluded) were categorized into three separate categories (<25th, 25th-75th and>75th percentiles of all EC50 values) according to their corresponding

sustained IgG response, which was maintained for at least 5 consecutive days during hospitalization. Out of the 130 patients, 21 patients with IgG titer fluctuating between

the three established categories were separated into an intermediate category. Kruskal-Wallis test shows a significant association between the LOS and sustained IgG cate-

gories (p value = 1.2x10-3).

Sustained IgG titer Total IgG Low IgG Medium IgG High IgG Intermediate category

Number of patients (%) 130 15 (11.5) 59 (45.3) 35 (26.9) 21 (16.1)

Length of stay, days median (IQR) 15 (9.8–23) 9.0 (8.0–12.0) 14.9 (9.0–20.0) 16.0 (13.0–24.0) 20.0 (10.0-28-5)

https://doi.org/10.1371/journal.pcbi.1009778.t002
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Fig 3. IgG titers are associated with mortality early post-symptom onset and with severity of disease later during hospitalization. (A) Median IgG

titer at a given day during hospitalization by disease severity: mild (blue), moderate (green), severe (orange) and non-survivors (red). Back bars on the x-

axis describe the day of death for each deceased patient. For clarity purposes, only the first 30 days of hospitalization are shown (blood samples were

collected up to day 60 PSO). Shaded areas correspond to the 90% confidence intervals. IgG positivity threshold is indicated with a horizontal black dotted

line at -log10(EC50) = 2.5. We define “day post-symptom onset" (PSO) as the day relative to the patient-reported onset of symptoms. (B) IgG titers for

survivors (cyan) and non-survivors (red) at day 4 PSO (used here to represent the statistical differences observed between convalescent and deceased

patients from days 3 to 8). (C) Box-plot at day 18 PSO (representative day of the statistical differences observed from days 18 to 24) describing IgG titers

(-log10 EC50) by patient outcome: survival patients requiring oxygen supplementation (nasal canula: grey, non-rebreather mask: blue; high-flow: salmon;

intubation: pink) and non-survival patients (red). Boxes extend from the 25th to 75th percentiles, whiskers extend to the lowest and highest data point

within 1.5 interquartile range of the lower and upper quartiles, the middle line corresponds to the median. Statistical significance is denoted with

asterisks (Mann-Whitney; �p< 0.05, ��p< 0.01).

https://doi.org/10.1371/journal.pcbi.1009778.g003
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(S7B and S7C Fig). Hispanic and non-Hispanic subjects had a median IgG titer above the sero-

positive threshold early PSO and their IgG titers steadily increased during the second week to

reach a plateau at days 10–17 (S8A Fig). Hispanic patients had higher median IgG titer than

non-Hispanics from days 19–40 PSO (Mann-Whitney p< 5x10-2; S8A Fig and S2 File). In line

with this observation and relationship between IgG titers and severity of disease later PSO (see

above), we found an association between mild-to-moderate and severe outcomes and ethnic-

ity, where 51% of Hispanic survivors suffered from severe disease as compared to 30% of non-

Hispanic survivors (Chi-square p = 0.03) (S8B Fig). In addition, there was a similar trend

when comparing sustained IgG responses, with 47% and 26% of Hispanic and non-Hispanics

with a sustained high IgG titer (Chi-square p = 0.03; Supp 8C). Our data suggests that ethnicity

is associated with IgG titers and severity of symptoms but not mortality in the late window

PSO.

Trajectories of specific biomarkers are associated with COVID-19

mortality

Anti-spike IgG antibody is only one facet of COVID-19 response; other immune and inflam-

matory features have been shown to be associated with disease outcome [41]. Similar to the

temporal analysis carried out on IgG titers, we compared the distribution of WBC, neutro-

phils, lymphocytes, eosinophils, platelets, CRP and BUN on a five-day rolling window basis

across our disease severity categories (Fig 4). Our results show that non-survivors have a dis-

tinct profile from the survivors (mild, moderate or severe disease). As a group, non-survivors

showed higher levels of WBC, neutrophils, CRP and BUN and lower levels of lymphocytes and

eosinophils than patients who survived. However, we did not observe a clear pattern distin-

guishing patients with mild, moderate or severe illness. WBC and neutrophil levels were statis-

tically higher for non-survivors between days 7 to 32–33 than for survivors (Mann-Whiney

p< 1x10-3, Fig 4A and 4B and S1 File). BUN levels in non-survivors remained significantly

higher from day 6 after PSO until day 43 (Fig 4H and S1 File). CRP levels abruptly increased

over 10 mg/dl within the first ~4 days in the non survivors and remained significantly higher

from days 5 to 28 (Fig 4G). On the contrary, lymphocyte levels showed minimal variation

throughout hospitalization and the non-survivors displayed consistently lower levels relative

to the survivor group from days 2 to 35 (Fig 4C and S1 File).

Time-dependent clinical features outperform static features obtained upon

admission to predict mortality

Demographic, clinical and/or biochemical features extracted upon admission have been used

extensively to predict fatality risk in COVID-19 patients [41]. However, there is a need for

orthogonal approaches that leverage longitudinal information to inform the early assessment

of fatality risk in patients that do not yet show severe signs of disease [28]. In order to compare

the predictive value of longitudinal features and static features, we first generated models

based on patient data taken at the time of admission to predict severity of disease and mortal-

ity. We next utilized longitudinal data collected during the patient’s hospital stay focusing on

immune biomarkers to predict mortality and intubation in near real time (Methodology detail

in S3 File).

Patient electronic-medical record data is modestly predictive for COVID-19 out-

comes. To identify biomarkers that could improve an initial clinical assessment of patient

prognosis we implemented machine learning models to predict severity of the disease using

only information that would be available upon admission, including immune, clinical and

demographic features (e.g. neutrophil counts, LDH levels or age; S10 Fig). We compared
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logistic regression, random forest, and a two-layer perceptron network and found that all

models performed similarly based on area under the receiver operating characteristic

(AUROC) and precision-recall curve analysis (Figs 5A and S9). In general, our predictive per-

formance was better for more severe outcomes; we achieved 63.2% and 66.0% AUROC for

non-survivors and patients with severe disease respectively, compared with AUROC of 46.1%

and 56.0% for patients with mild and moderate disease respectively. Next, we identified the

features which most strongly contributed to the model’s predictions. For the best performing

model, the random forest, we computed feature importance scores to describe the weight each

feature has towards the final prediction (S10 Fig). We found six features that are highly rele-

vant for classification (features among the top 30% used to predict at least three categories):

LDH, neutrophils, platelets, BMI, BUN and initial temperature [42–46]. Other features known

to be associated to COVID-19 severity and mortality are also predictors of specific categories

in our cohort [47–49]. For instance, age appears among the top features when predicting mild

and severe disease, while levels of albumin and lymphocytes predict severe disease and mortal-

ity. We are also able to distinguish features that do not contribute to clinical predictions (fea-

tures among the bottom 30% used to predict at least three categories): sore throat, residing at

assisted living facility, diarrhea, sex, or Black race. In contrast to previous findings, we

observed a negligible contribution of admission eosinophil counts in our model [50].

Daily immune biomarkers can predict COVID-19 events on a day-to-day basis. We

next sought to integrate the findings that longitudinal immune biomarkers are associated with

outcomes (mortality and intubation) into a predictive model. We hypothesized that longitudi-

nal biomarkers are more suited for predicting outcomes within the next few days rather than

the patients’ final outcome. To address this question, we implemented machine learning mod-

els to predict a patients’ mortality status (Fig 5B and 5D) and intubation (S11 Fig) within the

next k days using immune biomarkers that would have been available on a given day. In a rep-

resentative example, for k = 5, we were able to achieve a mean AUC score of 70.2% when pre-

dicting death with a random forest that used the daily values of lymphocytes, WBC counts,

IgG titers, and neutrophils along with the day (Fig 5B), and we found similar results as we var-

ied k from 2 to 10 (Fig 5C and 5D). When predicting intubation, the performance of the classi-

fier decreases (S11C and S11D Fig). On precision-recall, intubation appears to perform better,

but this outcome is due to the higher prevalence of intubation-positive samples in the dataset

(39%) relative to death (12.7%), which makes high levels of precision more difficult to achieve

(S11B–S11D Fig). Additionally, we found that the performance of the longitudinal classifier to

predict mortality varies in a time-dependent manner; classifier performance improves over

time until reaching a peak in the firth week PSO (Fig 5B–5D). When evaluated on a weekly

basis (k = 5), the mean AUROC increases from 60.2% in the first week of evaluation (PSO) to

80.2% in the fifth week of evaluation (PSO) (Fig 5B). The predictions were not as accurate for

longitudinal prediction of intubation; AUROCs were 53.8%, 56.2%, 55% and 58.9% for weeks

1–4 respectively (S11E Fig).

Shapley values on the longitudinal model identifies patient clusters with higher likeli-

hood of outcomes. To understand how these immune biomarkers relate to the likelihood of

mortality, we estimated the Shapley values associated with the features of our longitudinal

Fig 4. Dynamic variation of leucocytes, inflammatory biomarkers and renal function during hospitalization is associated with mortality.

Levels of (A) total white blood cell count (WBC), (B) neutrophils, (C) lymphocytes, (D) neutrophil to lymphocyte ratio, (E) eosinophil, (F) platelet,

(G) CRP and (H) BUN during hospitalization. Patients are categorized according to the severity of disease: mild–blue, moderate—green, severe—

orange and non-survival—red. Cell count and CRP and BUN levels are averaged using a five-day sliding window. Back bars on the x-axis are the

day of death for each deceased patient. Shaded areas correspond to 90% confidence intervals. The group size of the mild category is reduced to one

to three patients after day 11 PSO. We define “day post-symptom onset" (PSO) as the day relative to the patient-reported onset of symptoms.

https://doi.org/10.1371/journal.pcbi.1009778.g004
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Fig 5. Time-dependent clinical and laboratory data outperform day of admission data to predict fatal outcome. (A) ROC performance on

predicting severity of disease and mortality using a random forest classifier based on data from the EMR (including clinical, laboratory data and

demographics; see S7 Fig) on admission. Shaded areas correspond to ± 2 standard error of the mean. (B) ROC performance on predicting mortality

within the next five days (k = 5) using a neural network based on time dependent clinical features (IgG titers, total white blood cell count, neutrophils,

lymphocytes, eosinophils, platelets, CRP and BUN; see Fig 4). ROC curves correspond to the overall performance (purple) as well as weekly predictions

(relative to the patient-reported onset of symptoms) during the length of hospitalization. A-B) Legend describes the corresponding area under the

curves. (C) Heatmap shows AUROC for daily mortality classifier (neural network) for different values of k (number of days into the future to predict; y-

axis) and day of evaluation (restrict test set to a given day). (D) AUROC as a function of day of evaluation for various values of k. Regardless of k, the

performance of the classifier remains consistent and improves over the course of a month. (C-D) We define “day of evaluation” as the day relative to the

patient-reported onset of symptoms when mortality risk was assessed. ROC: receiver operating characteristic; EMR: electronic medical record;

AUROC: area under the receiver operating characteristic.

https://doi.org/10.1371/journal.pcbi.1009778.g005
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model relative to the prediction. Shapley values assign an attribution to features on a per-sam-

ple basis, based on how they contribute to the prediction, and enabling us to understand how

the predictive value of a feature changes with that feature’s value. We plotted the mean Shapely

values for each sample compared to their lab values (Figs 6A–6D and S12 and S13 and S4 File).

For IgG titers, we observed a quadratic relationship where both high and low values were asso-

ciated with a higher propensity of fatal outcomes relative to a middle value (Fig 6A). Such rela-

tionship describes a gradual shift from negative to positive as the number of days increases

(S12 Fig): lower IgG titers are more informative when predicting mortality early PSO and

higher IgG titers are more informative when predicting mortality later PSO. This observation

agrees with the associations we detected in regard to IgG titers being non-linearly correlated

with outcome, with both high and low values of IgG associated with worse outcomes in a time-

dependent manner. In addition, our models associated a higher attribution to increasing val-

ues of WBCs, neutrophils and day (PSO) of measurement, while assigning lower attributions

to higher levels of lymphocytes (Figs 6B–6D and S13), in agreement with our statistical analysis

described above (Fig 4).

Next, similar samples were grouped together based on their attributions to identify and

characterize groups of samples with higher or lower likelihood to be associated with mortality

(Fig 6E). Thereby, we identified 8 clusters with varying likelihoods of mortality during the fol-

lowing five days. Enrichment analysis on each cluster revealed that clusters 3 and 4 were signif-

icantly enriched for patients who survived while cluster 2 was enriched for non-survivors

(cluster 6 was also enriched for non-survivors but became non-significant after correcting for

multiple hypothesis) (Fig 6E). We observed a distinct distribution of immune biomarkers

when comparing clusters (S14 Fig) that aligns well with the associations described above (Figs

3 and 4). For instance, patient samples in cluster 3 (enriched for survivors) show the lowest lev-

els of WBC and neutrophil counts while patient samples in cluster 4 (also enriched for survi-

vors) show the highest values of lymphocyte counts

Discussion

Most current models to predict COVID-19 disease severity rely on invariable features obtained

upon hospitalization [7–14,28,50]. However, time-dependent measurements monitoring dis-

ease progression can flag high risk patients by detecting changes in their lab values and identify

the optimal therapeutic windows for administration of a limited arsenal of anti-inflammatory

drugs and antibody-based therapies. Since the immune response is associated with COVID-19

severity, longitudinally monitored immune biomarkers can provide a precise description of

the disease trajectory [2,15–25]. The work described here followed the evolution of anti-

SARS-CoV-2 spike IgG, immune cells and other non-immunological biomarkers at single-day

resolution throughout the length of hospitalization on a cohort of 147 COVID-19 patients.

This enabled us to capture a detailed and unique time frame progression of the disease and

clinical features associated with different outcomes. Our analysis of IgG trajectories suggests

that a potent, early immune response is associated with survival in hospitalized patients. First,

survivors had a higher basal IgG titer (at or above the seropositive threshold) early PSO and a

faster seroconversion. Secondly, patients who died had much lower IgG titers from days 2–11

compared to patients who survived, highlighting a poor or delayed IgG response early in the

illness. Similar observations have been reported for non-survivors where robust and early IgA

and IgM responses were detected, but delayed and incomplete IgG immune responses were

also observed pointing to a lack of early IgG class switching [22,23,25]. We also observed key

differences during the later phase of hospitalization (days 18–23 PSO) where patients with

higher anti-spike IgG antibody levels required a higher level of oxygen supplementation. This
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observation aligns with previously reported findings where the titers of total Abs, nAbs, anti-

RBD IgG and anti-NP IgG and IgM were found to correlate with the severity of the disease

[51–54]. In addition, the sustained high titer IgG response observed for a subset of hospitalized

patients with severe disease is similar to that described in acute viral infections such as those

caused by Ebola virus and Dengue virus, and chronic inflammatory conditions such as sys-

temic lupus erythematosus [55–57]. It remains unclear why the Ab response correlates with

severity of the disease later during hospitalization; one possibility is that the quality of Ab pro-

duced is inadequate in controlling the disease and could even augment pathogenicity. Beside

neutralization properties, antibodies are also involved in a plethora of effector functions via

their Fc domain. Recent studies have found that patients with severe COVID-19 have a higher

proportion of afucosylated Fc IgG, which is known to trigger a highly inflammatory response

via FcyR pathways [58]. Overall, these results illustrate the time-dependent association of anti-

SARS-CoV-2 S IgG titers with different COVID-19 outcomes: high titers associate with sur-

vival during an “early time window” (days 2–11 PSO), whereas during a “late time window”

(days 18–23 PSO) high titers associate with more severe illness. In addition to IgG titers, we

also found temporal associations between other immune and clinical biomarkers and mortal-

ity. Non-survivors experienced i) higher levels of WBC (neutrophils), CRP and BUN during

the first week PSO until weeks 4–5 and; ii) consistently lower lymphocyte levels throughout

the hospitalization period. Altogether, these findings suggest that immune biomarkers, mea-

sured at different time points, might have prognostic implications, not only by identifying

high risk patients but also by predicting fatal outcomes in the near future. To this end, we eval-

uated classifiers separately trained on static variables obtained upon hospital admission and

immune biomarkers longitudinally monitored during hospitalization. Our classifier trained

solely on demographic factors alongside lab values collected at day of admission is useful for

identifying high risk patients (AUROC = 63.2%). We found six features that are highly relevant

for classification: LDH, neutrophils, platelets, BMI, BUN and initial temperature. These fea-

tures align with our temporal statistical analysis, for instance neutrophil and BUN levels are

significantly higher among non-survivors after the first week of hospitalization. Moreover,

other studies also describe the same features as potential prognostic biomarkers for COVID-

19 severity and/or mortality, validating our approach [14,42–46]. These observations are also

in line with other studies which have produced similar models [59,60]. For example, Knight

et al. [11] developed a model for predicting COVID-19 mortality from eight admissions fea-

tures. Their model showed a higher performance (AUROC = 79%) but did so using a much

larger dataset (35,463 vs 147 patients). We demonstrate that, in addition to static features

obtained upon hospital admission, longitudinally monitored immune biomarkers can also be

leveraged to predict fatal outcome in COVID-19 hospitalized patients. The classifier trained

on time-dependent immune features can predict not just the patient’s likelihood of mortality,

but also when that may happen. This model has a reasonable overall AUROC of 70.2% which

increases, as the disease progresses, up to 80.2% in the fifth week PSO. Our observation that

AUROC increases over time suggests that lab values become more informative later during

hospitalization. In addition, we also observed a positive correlation between day PSO and the

Fig 6. Shapley value analysis reveals how immune biomarkers relate to mortality. (A-D) For each of 4 immune biomarkers, the

mean Shapley value compared to the biomarker value was plotted for each sample in the dataset (see materials and methods for

details). The higher the Shapley value, the more the variable is predictive for mortality (and vice-versa): (A) IgG titers; (B) WBC count;

(C) neutrophil count; (D) lymphocyte counts. Shapley values are colored based on the corresponding day PSO. (E) UMAP clustering

of mean Shapley values. Red diamonds correspond to samples from patients that died within five days (k = 5) of the evaluation day.

Right panel describes the significance of the enrichment for survivors (cyan) or non-survivors (red) in each of the obtained clusters

using the hypergeometric test corrected for multiple hypothesis testing by Benjamini/Hochberg. Dotted horizontal line corresponds to

the significance level at p = 0.05.PSO: post symptom onset.

https://doi.org/10.1371/journal.pcbi.1009778.g006
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likelihood of fatal outcome. Our model did not predict intubation as accurately as mortality,

potentially reflecting that patients with severe COVID-19 and poor prognosis were provided

palliative care rather than intubation (55).

We provide novel insights into patient outcomes by interpreting the features that drive our

model using Shapley value analysis and identifying how the contributions of different features

to our models change as the values of those features evolve. Comparing Shapley values and

raw lab values unveiled significant trends which align with and reinforce previous findings.

For example, low IgG titers are more informative during the early time window to predict

mortality (while high IgG titers are more informative days later PSO) and higher WBC and

neutrophil counts are more predictive for fatal outcomes (Figs 6 and S12) [18–20,61,62]. In

addition, low lymphocyte levels are predictive for mortality, and in fact many non-survivors

had lymphopenia (lymphocytes < 1x109 cells/L) throughout their hospitalization. Eosinopenia

has also been reported as a biomarker of more severe outcomes, but our results did not support

this finding [62]. We found that eosinophil counts contributed little to predictions when

included in the model, and we only found significant differences in their value between out-

comes from days 8–11 [20]. Incorporating interpretability mechanisms into clinical models

can help identify biases and incorrect predictions due to differences between the training and

real data [63–67]. Using Shapley values and feature importance scores, we showed that our

models are consistent with both our statistical observations and with previous observed rela-

tionships in the literature. Our models consistently assign similar attributions to similar fea-

tures across cross-validation runs, and those attributions align with expectations of how these

immune biomarkers should correlate with outcomes. Thus, we can be confident that our mod-

els are detecting meaningful patterns in patient data.

Over the course of the pandemic, clinical practice has evolved with the use of antivirals,

monoclonal antibodies and steroids to treat COVID-19 [68]. As treatment of COVID-19

changes, additional biomarkers to predict outcome may need to be investigated. Our study did

not capture SARS-CoV-2 viral loads, which have been associated with clinical outcomes in

other studies and would likely further inform our predictive models of infection outcomes

[69,70]. Also capturing and analyzing day to day changes in oxygen supplementation and addi-

tional clinical and laboratory information (e.g. additional Ig titers) could provide more granular

information to further inform pathogenesis models and treatment of severe COVID-19 [71].

Here we present a framework which could be utilized in future studies. An additional limitation

of this study is the size of our cohort (N = 147) and its bias towards hospitalized patients. Since

the main objective of our study is to evaluate the potential to predict fatal outcomes using only

longitudinally monitored biomarkers, we opted for a detailed characterization of the biomark-

ers trajectories throughout the hospitalization stay. Although our dataset represents the hospi-

talized spectrum of COVID-19 disease, it would be interesting to also study outpatients,

longitudinally monitored in a similar fashion. A multi-center re-evaluation of the proposed lon-

gitudinal model, using a more extensive cohort, would be necessary prior to incorporating this

model into the clinic. Nevertheless, the reported time-dependent associations of longitudinally

monitored biomarkers can still be useful while assessing illness evolution.

The extent and severity of this pandemic has challenged healthcare providers to find better

ways to care for a surge of patients and to identify those who are at higher risk for poor out-

comes. Current models, trained on static features upon hospital admission and larger cohorts,

have shown respectable-to-excellent results in predicting mortality (AUCs ranging from 68 to

98%, depending on the features, models and datasets used) [9,10]. These, however, do not con-

sider features that describe how disease progresses over time during hospitalization, overlook-

ing a wealth of clinical data to build more precise models. Here, we identified a set of immune

biomarkers which can be used to longitudinally monitor the time-course of hospitalized
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COVID-19 patients. Our time-dependent models, inherently different from most current

models, show that frequent testing of specific immune biomarkers could be used to preemp-

tively detect COVID-19 fatalities and estimate when that may occur. There is a broader interest

in real-time or near-real-time monitoring of patient biometrics, and our model represents one

example of this trend applied to a particularly urgent challenge. The results presented here

encourage the development of a broader computational framework that combines static fea-

tures (including demographics, comorbidities and other parameters obtained upon hospital

admission) and longitudinally monitored clinical features collected during hospitalization to

assist in the daily prognosis of COVID-19 patients and tailor therapeutic interventions at par-

ticular time-frames.

Materials and methods

Ethics statement

Study was approved by the Institutional Review Boards (IRB) of the Albert Einstein College of

Medicine (2016–6137), and informed consent was waived because the study was retrospective,

and involved no more than minimal risk to subjects.

Study design and sample collection

This study was conducted at Montefiore Medical Center (MMC) in association with the Albert

Einstein College of Medicine and was conducted with approval of Albert Einstein College of

Medicine Institutional Review Board. The study included all patients who required MMC hos-

pital admission with COVID-19 who had a positive RT-PCR test for SARS-CoV-2 infection

between March 1, 2020 through June 1, 2020. Patients were monitored daily and blood sam-

ples were collected to measure serum reactivity (to the SARS-CoV-2 spike protein) repeatedly

over the course of hospitalization. 147 patients were monitored by days PSO, ranging from

1–60 days PSO. Clinical and laboratory data was extracted from electronic health records.

Demographics including race and ethnicity, age, gender, living residence status, and BMI

and comorbidities, including smoking status were recorded. Vitals and oxygen supplementa-

tion status were recorded for each patient throughout their hospitalization. Presenting vitals

and presenting symptoms are listed in S1 Table. Maximum temperatures were collected, and if

temperatures over 100.4˚ F were recorded, the number of days with fever was noted. The max-

imum oxygen supplementation received was recorded as a surrogate for lung function and

representation of disease severity. Patients were divided into four categories—mild, moderate,

severe, and non-survival. The mild category included patients who did not require supplemen-

tal oxygen. The moderate category had patients who required nasal cannula (1-4L/min to

maintain SpO2>92%) or non-rebreather mask. The severe category included patients that

required non-invasive ventilation, high-flow oxygen (�6L/min to maintain SpO2>92%) or

invasive mechanical ventilation or extracorporeal membrane oxygenation (ECMO). Non-sur-

vivors died during the hospitalization. Lab values that were monitored included: complete

blood counts, liver function tests, BUN, CRP, D-dimer, and coagulation panel.

Sample collection, handling and longitudinally monitored biomarkers

Daily blood samples were obtained by venipuncture (BD Vacutainer, Serum), for clinical care

and serum was obtained by centrifugation of remnant clinical samples which, aliquoted and

stored at -80˚C. Rarely when serum was not available, plasma was collected. Prior to the mea-

surement of anti-spike IgG antibody titers, samples were heat-inactivated for 30 minutes at

56˚C and stored at 4˚C. Samples were handled under BSL-2 containment in accordance with a
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protocol approved by the Einstein institutional biosafety committee. Daily samples were used

to measure i) anti-SARS-CoV-2 spike IgG antibody titers, ii) WBC counts, iii) lymphocyte

counts, iv) neutrophil counts, v) eosinophil counts, vi) platelet count, vii) CRP, and viii) BUN.

Whenever possible, all eight biomarkers were measured in each sample.

SARS-CoV-2 spike specific IgG robotic ELISA

Half-area microtiter ELISA plates (Corning #3690) were coated with 25 μl of 2 μg/ml purified

spike protein in phosphate-buffered saline (PBS) overnight at 4˚C [38]. Plates were then

washed with PBS-T (PBS, pH 7.4 + 0.1% (v/v) Tween) before being blocked for 1 h at 25˚C

with PBS-T + 3% (v/v) milk (Bio-Rad #170–6404). Serum was serially diluted starting from

1:100 to 1:777600 (6 points curve) in V bottom 96-well source dilution plates (Axygen #P-96-

450V-C-S) with PBS-T. From this point, the APE Elite automated ELISA system (DAS, Italy,

www.dasitaly.com) was used for the remaining ELISA steps. After PBS-T wash of the blocked

plates, an APE Elite reference baseline (wavelength 630 nm) was performed. Diluted samples

were added to well in duplicate using 2 integrated steel needles. Plates were incubated for 1 h

at 37˚C with gentle shaking before being washed with PBS-T. Secondary antibody (1:3,000 in

1% milk PBS-T): anti-human IgG-Horseradish peroxidase (HRP) (Thermo Fisher #31410)

was added and incubated for 1 h at room temperature. Plates were washed prior to develop-

ment with ultra-TMB ELISA substrate solution at room temp (Thermo Scientific #34029).

Plates were incubated for 5 min before quenching the reaction with 0.5 M sulfuric acid. Fol-

lowing this, plates were read using a dual wavelength mode with a test wavelength of 450 nm

and a reference wavelength of 620 nm. ELISA experimental data were plotted using the nonlin-

ear least-squares analysis tool from Prism to fit a sigmoidal function (log10 IgG dilution and

A450). From each sigmoidal curve, an EC50 was extracted, corresponding to the IgG dilution

that gives half of maximum absorbance.

Categorizing the sustained IgG response

Categorization of patients into sustained IgG response categories (Low, Medium and High) is

based on daily IgG titers, as dictated by the IgG EC50 values during hospitalization. Patient

data associated with short hospitalization stays (fewer than seven days) were eliminated from

this analysis, to avoid categorizing the sustained IgG response of patients for which there were

insufficient time points. IgG EC50 values at any given day were averaged using a 5-day sliding

window. Following this, all daily EC50 values (from all patients while hospitalized) were pooled

together, the 25th (-log10(EC50) = 2.91) and 75th (-log10(EC50) = 4.47) percentiles were used as

the lower and upper thresholds respectively to categorize the sustained IgG response of each

patient. Patients are required to have IgG EC50 values for at least for 5 consecutive days within

a particular range delimited by the IgG EC50 thresholds in order to be assigned a particular cat-

egory: i) low (sustained EC50� 2.91); ii) medium (sustained EC50 > 2.91 and� 4.47) and; iii)

high (sustained EC50 > 4.47). In order to minimize potential categorization errors due to vary-

ing IgG titers towards the end of the hospitalization stay (e.g. patients with sustained medium

IgG titer showing higher IgG titers at the end of the hospitalization), the sustained IgG titer is

required to extend to the end of the hospitalization stay. In addition, patients whose IgG titers

fluctuated between the established thresholds, not reaching stable IgG titers within a delimited

range for at least five days, were categorized as “non-conclusive”.

Longitudinal trajectory analysis

Longitudinal data on a clinical variable (IgG EC50, WBC, neutrophils, lymphocytes, eosino-

phils, platelets, CRP and BUN) were averaged using a sliding window width of 5 days (e.g. IgG
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EC50 value for day 11 was averaged using all available IgG EC50 readouts from days 9 to 13).

Trajectories were analyzed with the scikit-learn and seaborn packages [67]. Line plots describe

the median value and the 90% confidence intervals. Day-to-day statistical significance between

groups (with� 10 patients per group) was assessed using Mann-Whitney test, p-values were

corrected for multiple hypothesis testing using the Benjamini-Hochberg correction [72].

Classifiers

For each classification task, we used three types of models, all implemented using the scikit-

learn package in Python (Supp File 3). We used random forests with num_trees set to 10, logis-

tic regression with max_iter set to 10000, multilayer perceptron neural networks with 1 hidden

layer of size 50, a regularization alpha of .1, and 1000 iterations for training. We also imple-

mented a classifier which always predicts the most prevalent label in the training set to repre-

sent a baseline model which represents a ‘common-sense’ prior. We trained each model using

100 cross-validation iterations using the default settings from the ‘train_test_split‘function.

We computed ROC and plot precision recall (PRC) curves using the ‘plot_roc_curve‘and

‘plot_precision_recall_curve‘functions and interpolating the resulting values. We used a linear

interpolation method for ROC curves and a right-sided step function interpolation for the

PRC curves (using the ‘kind = ‘next’‘parameter of the ‘interp1d‘function in sklearn). We gen-

erated the ROC and PRC plots by drawing confidence intervals around each point in the inter-

polated curves across the 100 iterations and shading in the regions spanning two standard

errors of the mean. For feature extraction, we used the ‘feature_importances_‘and the ‘coe-

f_‘attributes of the ‘RandomForestClassifier‘and ‘LogisticRegressionClassifier‘classes

respectively.

Admission values classifier

For the model which predicted outcomes using admission lab values and demographics, we

used a combination of values from patient intake data, demographic information, and admis-

sions lab values. Binary values that indicated the presence or absence of a symptom/condition

included: fever, shortness of breath, sore throat, chills, diarrhea, oxygen supplementation

required at presentation, African American (indicated in the EMR as ‘Black’ vs ‘non-Black’),

male sex, whether or not the patient resided in assisted living facilities, and whether or not the

patient had glucose-6-phosphate dehydrogenase (G6PD) deficiency. Numeric features

included age, BMI, initial temperature, initial respiratory rate, albumin levels, admissions

BUN, admissions neutrophil count, admissions lymphocyte count, admissions aspartate ami-

notransferase (AST, a liver function test), alanine aminotransferase (ALT, a liver function

test), admissions alkaline phosphatase level (ALK, a liver function test), LDH, (a biomarker of

tissue damage), CRP,(a biomarker of inflammation), international normalized ratio (INR, a

measure of blood clotting), admissions platelet count, admissions partial thromboplastin time

(PTT, a measure of blood clotting), admissions prothrombin time (PT, a measure of blood

clotting), admissions eosinophil count, and admission WBC count. All numeric columns were

normalized to have mean zero and unit variance; binary values such as ‘fever‘were simply rep-

resented as a 1 or 0. Missing values were interpolated using the mean value of that column in

the dataset.

Longitudinal classifier

For the model which predicts outcomes in the future using present lab values, we broke down

our longitudinal trajectories into a unique data point for each day. For interpolation, we rolled

forward the last recorded value of a lab to represent the notion of ‘latest lab value’. Our model
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used 5 features: lymphocytes, WBC count, neutrophil count, IgG titer, and day of observation

PSO. We normalized each feature by subtracting out the mean and dividing by the variance.

We then sampled training/test splits on a per-patient basis; 25% of the patients were chosen

for the test set and 75% to train each time. All samples associated with a patient were assigned

to the respective data set. This strategy was adopted to prevent leaking of information between

training and test set due to a single patient having similar labs and outcome status on different

days (eg. a patient may be intubated for multiple days with the same lab values recorded

throughout. A sample from one day may be allocated to the training set and another to the test

set, making it possible for the model to memorize values at training time to unfairly boost per-

formance). For evaluation of ROC/PRC on a daily/weekly basis, we used only those samples in

the test set which were from a given day/week. All curves were plotted as an average across

cross-validation runs.

Shapley values

For each cross-validation cycle of the random forest longitudinal classifier, we computed Shap-

ley values for the test set using the python package SHAP. Because we randomly resampled

training/test sets during each training iteration, each sample only showed up in the test set for

some fraction of the iterations. We kept track of this occurrence across the cross-validation

and aggregated the Shapley values for each sample across the iterations it appeared in and aver-

aged those values. This approach gave us a mean Shapley value for each sample. We then com-

pared these values to the actual lab values for those samples to generate scatter plots and

regressions. For clustering, we used the python package umap-learn to perform a UMAP clus-

tering of our mean Shapley values. We then used the DBSCAN algorithm as implemented in

the scikit-learn python package with eps set to .75 (the maximum distance between samples in

a neighborhood) to cluster the samples. For each cluster, we performed a hypergeometric test

(p-values were corrected for multiple hypothesis testing using Benjamini/Hochberg) to evalu-

ate the enrichment of survivors and non-survivors.

Statistics

Statistical parameters, including inclusion and exclusion criteria and statistical assumptions

(normal distribution) are reported in the main text figures and figure legends. To calculate sig-

nificance involving more than 2 groups, we have applied a Mann-Whitney test where p-values

were corrected for multiple hypothesis testing using the Benjamini-Hochberg correction. Data

are judged to be statistically significant when p< 0.05 in and are denoted with asterisks as fol-

lowed: �p< 0.05, ��p< 0.01. Statistical comparison on the length of hospitalization was

assessed using a Kruskal-Wallis test. Association between categorical data (ie: distribution of

sustained IgG titers or severity of disease) was evaluated by a Chi-square test of independence.

Supporting information

S1 Fig. The sustained IgG response of COVID-19 patients can be categorized based on the

daily EC50 titers. EC50 titers over time were used to categorize patients with� 7 days of hospi-

talization (n = 130) into three categories that describe the sustained IgG titer: (A) low, (B)

medium and (C) high. Categorized patients are required to show daily IgG EC50 titers for at

least for 5 consecutive days within the range delimited by the 25th and 75th EC50 percentiles: i)

low IgG: -log10(EC50)� 25th perc (grey background); ii) medium IgG: 25th perc >

-log10(EC50)� 75th perc (blue background); iii) high IgG: -log10(EC50)> 75th perc (blue back-

ground). We define “day post-symptom onset" (PSO) as the day relative to the patient-
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reported onset of symptoms.

(TIFF)

S2 Fig. Patients with sustained low IgG titers against SARS-CoV-2 S protein also show low

IgG titers against SARS-CoV-2 N protein. Comparison of IgG Ab response against SARS--

CoV2 spike protein to nucleocapsid (N) protein. Anti-N and S IgG were measured at two

serum dilutions and compared among hospitalized patients with a sustained low IgG response

(patients = 17, serum samples = 23). ELISA experiments were performed in duplicates. Boxes

extend from the 25th to 75th percentiles, the whiskers represent the minimum and maximum

values and the middle line corresponds to the median.

(TIFF)

S3 Fig. Anti-SARS-CoV-2 IgG titers upon hospital admission are not associated with

COVID-19 severity or mortality. (A) Admission IgG titers for survivors (cyan) and non-sur-

vivors (red). No significance difference was observed between groups (Mann-Whitney

p = 0.4). (B) Fraction of survivors and non-survivors that tested positive for antibodies

(-log10EC50 > 2.5) the day of hospital admission (Purple: seropositive, Grey: seronegative). No

significant association was observed (Chi-square p = 0.53). (C) Admission IgG titers for

COVID-19 patients by clinical severity: mild (blue); moderate (green); severe (yellow) and;

non-survivors (red). No statistical significance was observed (pairwise Dunn’s multiple com-

parisons p>0.05). (D) Fraction of patients by severity that tested positive for antibodies

(-log10EC50 > 2.5) the day of hospital admission (Purple: seropositive, Grey: seronegative). No

significant association was observed (Chi-square p = 0.51). (A, C) Boxes extend from the 25th

to 75th percentiles, whiskers extend to the lowest and highest data point within 1.5 interquartile

range of the lower and upper quartiles, the middle line corresponds to the median. IgG positiv-

ity threshold is indicated with a horizontal black dotted line at -log10(EC50) = 2.5.

(TIFF)

S4 Fig. Deceased patients show lower anti-SARS-CoV-2 S IgG titers during an early time

window (days 2–11 PSO). Box-plot at days 0–14 PSO comparing IgG titers, as dictated by the

corresponding -log10(EC50), for survival (cyan) and non-survival (red) patients. Boxes extend

from the 25th to 75th percentiles, whiskers extend to the lowest and highest data point within

1.5 interquartile range of the lower and upper quartiles and the middle line corresponds to the

median. The size of each group is described under each boxplot. Statistical significance is

denoted with asterisks (Mann-Whitney; �p < 0.05, ��p< 0.01). We define “day post-symptom

onset" (PSO) as the day relative to the patient-reported onset of symptoms.

(TIFF)

S5 Fig. Mildly ill patients consistently show lower IgG titers during a late time window

(days 18–23 PSO). Box-plot at days 15–26 PSO associating IgG titers, by the -log10(EC50), by

outcomes: surviving patients requiring maximal oxygen supplementation (nasal canula: grey,

non-rebreather mask: blue; high-flow: yellow; intubation: pink) and non-survival patient

(red). Boxes extend from the 25th to 75th percentiles, whiskers extend to the lowest and highest

data point within 1.5 interquartile range of the lower and upper quartiles. The size of each

group is described under each boxplot. Statistical significance is denoted with asterisks

(Mann-Whitney; �p< 0.05, ��p< 0.01). We define “day post-symptom onset" (PSO) as the

day relative to the patient-reported onset of symptoms.

(TIFF)

S6 Fig. Non-surviving COVID-19 patients reach maximum IgG titers later than survivors.

Day (PSO) at which IgG plateau is reached for survivors (cyan) and non-survivors (red).
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Plateau day for a particular patient is defined as the first day at which IgG titers reach 95% of

the maximum IgG titer reported for that particular patient. Boxes extend from the 25th to 75th

percentiles, whiskers extend to the lowest and highest data point within 1.5 interquartile range

of the lower and upper quartiles, the middle line corresponds to the median. Statistical signifi-

cance is denoted with asterisks (Mann-Whitney; �p< 0.05).

(TIFF)

S7 Fig. IgG trajectory during hospitalization based on COVID-19 patients’ race. (A) IgG

EC50 values (averaged value based on a five day sliding window) during the length of hospitali-

zation of patients with different races: Black patients (black), White patients (pink). IgG posi-

tivity threshold is indicated with a horizontal black dotted line at -log10(EC50) = 2.5. Shaded

areas correspond to 90% confidence intervals. We define “day post-symptom onset" (PSO) as

the day relative to the patient-reported onset of symptoms. (B) Mosaic plot of COVID-19 dis-

ease (mild, moderate, severe, non-survival) relative to race (Black, White). (C) Mosaic plot of

IgG sustainable responses relative to race (Black, White). There was no statistical differences

between race and severity, mortality or sustained IgG response.

(TIFF)

S8 Fig. IgG trajectory during hospitalization based on COVID-19 patients ethnicity. (A)

IgG EC50 values (averaged value based on a five day sliding window) during the length of hos-

pitalization of patients with different ethnicity: Hispanic and non-Hispanic (pink). IgG posi-

tivity threshold is indicated with a horizontal black dotted line at -log10(EC50) = 2.5. Shaded

areas correspond to 90% confidence intervals. We define “day post-symptom onset" (PSO) as

the day relative to the patient-reported onset of symptoms. (B) Mosaic plot of COVID-19 dis-

ease (mild, moderate, severe, non-survival) relative to Ethnicity (Hispanic, non-Hispanic). (C)

Mosaic plot of IgG sustainable responses relative to Ethnicity (Hispanic, non-Hispanic).

(TIFF)

S9 Fig. Features extracted from electronic medical records at the day of admission enable

the prediction of severe disease and mortality. Roc and Precision-Recall curves resulting

from the evaluation of (A-B) random forest, (C-D) logistic regression and (E-F) neural net-

work to predict COVID-19 severity and mortality based on Electronic Medical Records

(including clinical, other laboratory data and demographics; see S7 Fig at the day of admission.

Shaded areas correspond to ± 2 standard error of the mean. Legends describe the correspond-

ing area under the curve.

(TIFF)

S10 Fig. Importance of features extracted from electronic medical records upon day of

admission to predict severity of disease and mortality. Features include clinical, other labo-

ratory data and demographics. Each feature is ranked according to its corresponding impor-

tance score obtained by random forest to predict a particular category of disease, including

non-survival: (A) mild; (B) moderate; (C) severe; and (D) non-survival.

(TIFF)

S11 Fig. Time-dependent clinical features enable prediction of mortality but not intuba-

tion. Evaluation of multiple machine learning methods to predict mortality and intubation

using longitudinally-monitored clinical data. (A-B) Predicting mortality five days into the

future; (C-D) Predicting intubation five days into the future (purple: neural network, dark

blue: Logistic regression, light blue: Random forest, red: Prevalence). (E-F) Predicting intuba-

tion five days into the future at different hospitalization weeks using a neural network (green:

week two, brown: week three, black: week four). Shaded areas correspond to ± 2 standard
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error of the mean. Legends described the corresponding area under the curve.

(TIFF)

S12 Fig. Shapley values highlight the differential relationship between IgG titers and mor-

tality in early and late PSO. Plots describe the mean Shapley value Vs IgG titer at specific

days PSO. We define “day post-symptom onset" (PSO) as the day relative to the patient-

reported onset of symptoms.

(TIFF)

S13 Fig. Hospitalization stay becomes more informative when predicting mortality. The

plot shows the mean Shapley value compared to the day PSO for each sample in the dataset.

We define “day PSO" (PSO) as the day relative to the patient-reported onset of symptoms.

(TIFF)

S14 Fig. Clustering of patient samples based on feature attributions reveal the importance

of IgG titers, WBC, neutrophil and lymphocyte counts to predict survival among hospital-

ized COVID-19 patients. Comparison of clusters corresponding to patient samples obtained

at any given day during hospitalization (see Fig 6E). Each single day of any given patient is

defined by the corresponding Shapley values on immunological features monitored longitudi-

nally. Boxes extend from the 25th to 75th percentiles, whiskers extend to the lowest and highest

data point within 1.5 interquartile range of the lower and upper quartiles.

(TIFF)

S1 Table. Symptoms and complication cohort characteristics. Data are shown as number

and percentage, n (%). Mild category is constituted of those who did not require supplemental

oxygen. Moderate category is constituted of patients who required nasal canula (1-4L/min to

maintain SpO2>92%) or non-rebreather mask. Severe category is constituted of patients who

were on non-invasive ventilation, high-flow oxygen (�6L/min to maintain SpO2>92%), inva-

sive mechanical ventilation or extracorporeal membrane oxygenation (ECMO). Non-survival

patients are those who deceased during the course of hospitalization. RR, respiratory rate, BP,

blood pressure, AMS, altered mental status, PO, per os (given by mouth), AKI: acute kidney

injury; ARDS: acute respiratory distress syndrome.
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S2 File. Trajectory statistics.
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S3 File. Machine learning.

(PDF)

S4 File. Shapley regression.

(DOCX)

Acknowledgments

The authors thank all the patients who consented to participate in our study and their health

care providers during their hospitalization. We also thank Mimi Kim, Xiaonan Xue, Kenny

Ye, Tao Wang and Li Xia for fruitful discussions on data analysis. We are grateful to Francesca

La Carpia and Emily Happy Miller for useful comments during manuscript writing.

PLOS COMPUTATIONAL BIOLOGY Immune biomarkers daily monitored can predict COVID-19 outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009778 January 18, 2022 24 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s017
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s018
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009778.s019
https://doi.org/10.1371/journal.pcbi.1009778


Author Contributions

Conceptualization: Gorka Lasso, Saad Khan, Stephanie A. Allen, Libusha Kelly, Johanna P.

Daily, Olivia Vergnolle.

Data curation: Gorka Lasso, Saad Khan, Stephanie A. Allen, Margarette Mariano, Jose A.

Quiroz, Gregory Quevedo, Aditi Hegde, Avinash Malaviya, Ahmed Khokhar, Olivia

Vergnolle.

Formal analysis: Gorka Lasso, Saad Khan, Stephanie A. Allen.

Funding acquisition: Kartik Chandran, Jonathan R. Lai, Libusha Kelly, Johanna P. Daily.

Investigation: Stephanie A. Allen, Margarette Mariano, Catalina Florez, Jose A. Quiroz, Greg-

ory Quevedo, Ryan J. Malonis, George I. Georgiev, Karen Tong, Natalia G. Herrera, Nicho-

las C. Morano, Scott J. Garforth, Olivia Vergnolle.

Methodology: Margarette Mariano, Erika P. Orner, Ariel S. Wirchnianski, Robert H. Bortz,

III, Ethan Laudermilch, M. Eugenia Dieterle, J. Maximilian Fels, Denise Haslwanter, Rohit

K. Jangra, Olivia Vergnolle.

Project administration: Olivia Vergnolle.

Resources: Catalina Florez, Erika P. Orner, Aldo Massimi, Ryan J. Malonis, George I. Geor-

giev, Karen Tong, Natalia G. Herrera, Nicholas C. Morano, Scott J. Garforth, Ethan Lauder-

milch, M. Eugenia Dieterle, J. Maximilian Fels, Denise Haslwanter, Rohit K. Jangra, Jason

Barnhill, Steven C. Almo, Kartik Chandran, Jonathan R. Lai.

Supervision: Jason Barnhill, Steven C. Almo, Kartik Chandran, Jonathan R. Lai, Libusha

Kelly, Johanna P. Daily, Olivia Vergnolle.

Validation: Gorka Lasso, Saad Khan, Stephanie A. Allen, Margarette Mariano, Catalina Florez,

Aldo Massimi, Aditi Hegde, Ariel S. Wirchnianski, Robert H. Bortz, III, Avinash Malaviya,

Ahmed Khokhar, Olivia Vergnolle.

Visualization: Gorka Lasso, Saad Khan, Stephanie A. Allen, Olivia Vergnolle.

Writing – original draft: Gorka Lasso, Saad Khan, Olivia Vergnolle.

Writing – review & editing: Gorka Lasso, Saad Khan, Catalina Florez, Nicholas C. Morano,

Denise Haslwanter, Jonathan R. Lai, Libusha Kelly, Johanna P. Daily, Olivia Vergnolle.

References
1. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coro-

navirus in the United States. N Engl J Med. 2020; 382(10):929–36. https://doi.org/10.1056/

NEJMoa2001191 PMID: 32004427

2. Amor S, Fernandez Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and

activation trigger hypoxia and vascular damage. Clin Exp Immunol. 2020; 202(2):193–209. https://doi.

org/10.1111/cei.13523 PMID: 32978971

3. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and trans-

missibility of COVID-19. Nat Med. 2020; 26(5):672–5. https://doi.org/10.1038/s41591-020-0869-5

PMID: 32296168

4. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting

Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in

the New York City Area. JAMA. 2020; 323(20):2052–9. https://doi.org/10.1001/jama.2020.6775 PMID:

32320003

5. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Dis-

tress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China.

PLOS COMPUTATIONAL BIOLOGY Immune biomarkers daily monitored can predict COVID-19 outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009778 January 18, 2022 25 / 29

https://doi.org/10.1056/NEJMoa2001191
https://doi.org/10.1056/NEJMoa2001191
http://www.ncbi.nlm.nih.gov/pubmed/32004427
https://doi.org/10.1111/cei.13523
https://doi.org/10.1111/cei.13523
http://www.ncbi.nlm.nih.gov/pubmed/32978971
https://doi.org/10.1038/s41591-020-0869-5
http://www.ncbi.nlm.nih.gov/pubmed/32296168
https://doi.org/10.1001/jama.2020.6775
http://www.ncbi.nlm.nih.gov/pubmed/32320003
https://doi.org/10.1371/journal.pcbi.1009778


JAMA Intern Med. 2020; 180(7):934–43. https://doi.org/10.1001/jamainternmed.2020.0994 PMID:

32167524

6. Bloomgarden ZT. Diabetes and COVID-19. J Diabetes. 2020; 12(4):347–8. https://doi.org/10.1111/

1753-0407.13027 PMID: 32162476

7. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with

COVID-19-related death using OpenSAFELY. Nature. 2020; 584(7821):430–6. https://doi.org/10.1038/

s41586-020-2521-4 PMID: 32640463

8. Bertsimas D, Lukin G, Mingardi L, Nohadani O, Orfanoudaki A, Stellato B, et al. COVID-19 mortality risk

assessment: An international multi-center study. PLOS ONE. 2020; 15(12):e0243262. https://doi.org/

10.1371/journal.pone.0243262 PMID: 33296405

9. Gao Y, Cai GY, Fang W, Li HY, Wang SY, Chen L, et al. Machine learning based early warning system

enables accurate mortality risk prediction for COVID-19. Nat Commun. 2020; 11(1):5033. https://doi.

org/10.1038/s41467-020-18684-2 PMID: 33024092

10. Cavallaro M, Moiz H, Keeling MJ, McCarthy ND. Contrasting factors associated with COVID-19-related

ICU admission and death outcomes in hospitalised patients by means of Shapley values. PLoS Comput

Biol. 2021; 17(6):e1009121. https://doi.org/10.1371/journal.pcbi.1009121 PMID: 34161326

11. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratification of patients admitted to

hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and vali-

dation of the 4C Mortality Score. BMJ. 2020; 370:m3339. https://doi.org/10.1136/bmj.m3339 PMID:

32907855

12. Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, et al. Living risk predic-

tion algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults:

national derivation and validation cohort study. BMJ. 2020; 371:m3731. https://doi.org/10.1136/bmj.

m3731 PMID: 33082154

13. McKeigue PM, Weir A, Bishop J, McGurnaghan SJ, Kennedy S, McAllister D, et al. Rapid Epidemiologi-

cal Analysis of Comorbidities and Treatments as risk factors for COVID-19 in Scotland (REACT-

SCOT): A population-based case-control study. PLoS Med. 2020; 17(10):e1003374. https://doi.org/10.

1371/journal.pmed.1003374 PMID: 33079969

14. Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction

model for COVID-19 patients. Nature Machine Intelligence. 2020; 2(5):283–8.

15. Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antago-

nism of interferon. Curr Opin Virol. 2012; 2(3):264–75. https://doi.org/10.1016/j.coviro.2012.04.004

PMID: 22572391

16. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced Host

Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181(5):1036–45 e9. https://

doi.org/10.1016/j.cell.2020.04.026 PMID: 32416070

17. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe

and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5):2620–9. https://doi.org/10.1172/

JCI137244 PMID: 32217835

18. Kong M, Zhang H, Cao X, Mao X, Lu Z. Higher level of neutrophil-to-lymphocyte is associated with

severe COVID-19. Epidemiol Infect. 2020; 148:e139. https://doi.org/10.1017/S0950268820001557

PMID: 32641174

19. Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, et al. Excessive Neutrophils and Neutrophil Extracellular

Traps in COVID-19. Front Immunol. 2020; 11:2063. https://doi.org/10.3389/fimmu.2020.02063 PMID:

33013872

20. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients

infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75(7):1730–41. https://doi.org/10.1111/all.

14238 PMID: 32077115

21. Xia Z. Eosinopenia as an early diagnostic marker of COVID-19 at the time of the epidemic. EClinicalMe-

dicine. 2020; 23:100398. https://doi.org/10.1016/j.eclinm.2020.100398 PMID: 32572392

22. Zohar T, Loos C, Fischinger S, Atyeo C, Wang C, Slein MD, et al. Compromised Humoral Functional

Evolution Tracks with SARS-CoV-2 Mortality. Cell. 2020; 183(6):1508–19 e12. https://doi.org/10.1016/

j.cell.2020.10.052 PMID: 33207184

23. Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, et al. Delayed production of neutralizing anti-

bodies correlates with fatal COVID-19. Nature Medicine. 2021.

24. Atyeo C, Fischinger S, Zohar T, Slein MD, Burke J, Loos C, et al. Distinct Early Serological Signatures

Track with SARS-CoV-2 Survival. Immunity. 2020; 53(3):524–32 e4. https://doi.org/10.1016/j.immuni.

2020.07.020 PMID: 32783920

PLOS COMPUTATIONAL BIOLOGY Immune biomarkers daily monitored can predict COVID-19 outcomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009778 January 18, 2022 26 / 29

https://doi.org/10.1001/jamainternmed.2020.0994
http://www.ncbi.nlm.nih.gov/pubmed/32167524
https://doi.org/10.1111/1753-0407.13027
https://doi.org/10.1111/1753-0407.13027
http://www.ncbi.nlm.nih.gov/pubmed/32162476
https://doi.org/10.1038/s41586-020-2521-4
https://doi.org/10.1038/s41586-020-2521-4
http://www.ncbi.nlm.nih.gov/pubmed/32640463
https://doi.org/10.1371/journal.pone.0243262
https://doi.org/10.1371/journal.pone.0243262
http://www.ncbi.nlm.nih.gov/pubmed/33296405
https://doi.org/10.1038/s41467-020-18684-2
https://doi.org/10.1038/s41467-020-18684-2
http://www.ncbi.nlm.nih.gov/pubmed/33024092
https://doi.org/10.1371/journal.pcbi.1009121
http://www.ncbi.nlm.nih.gov/pubmed/34161326
https://doi.org/10.1136/bmj.m3339
http://www.ncbi.nlm.nih.gov/pubmed/32907855
https://doi.org/10.1136/bmj.m3731
https://doi.org/10.1136/bmj.m3731
http://www.ncbi.nlm.nih.gov/pubmed/33082154
https://doi.org/10.1371/journal.pmed.1003374
https://doi.org/10.1371/journal.pmed.1003374
http://www.ncbi.nlm.nih.gov/pubmed/33079969
https://doi.org/10.1016/j.coviro.2012.04.004
http://www.ncbi.nlm.nih.gov/pubmed/22572391
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1016/j.cell.2020.04.026
http://www.ncbi.nlm.nih.gov/pubmed/32416070
https://doi.org/10.1172/JCI137244
https://doi.org/10.1172/JCI137244
http://www.ncbi.nlm.nih.gov/pubmed/32217835
https://doi.org/10.1017/S0950268820001557
http://www.ncbi.nlm.nih.gov/pubmed/32641174
https://doi.org/10.3389/fimmu.2020.02063
http://www.ncbi.nlm.nih.gov/pubmed/33013872
https://doi.org/10.1111/all.14238
https://doi.org/10.1111/all.14238
http://www.ncbi.nlm.nih.gov/pubmed/32077115
https://doi.org/10.1016/j.eclinm.2020.100398
http://www.ncbi.nlm.nih.gov/pubmed/32572392
https://doi.org/10.1016/j.cell.2020.10.052
https://doi.org/10.1016/j.cell.2020.10.052
http://www.ncbi.nlm.nih.gov/pubmed/33207184
https://doi.org/10.1016/j.immuni.2020.07.020
https://doi.org/10.1016/j.immuni.2020.07.020
http://www.ncbi.nlm.nih.gov/pubmed/32783920
https://doi.org/10.1371/journal.pcbi.1009778


25. Roltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, et al. Defining the features and dura-

tion of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci

Immunol. 2020; 5(54). https://doi.org/10.1126/sciimmunol.abe0240 PMID: 33288645

26. Yoon HA, Bartash R, Gendlina I, Rivera J, Nakouzi A, Bortz RH 3rd, et al. Treatment of severe COVID-

19 with convalescent plasma in Bronx, NYC. JCI Insight. 2021; 6(4). https://doi.org/10.1172/jci.insight.

142270 PMID: 33476300

27. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a Neutralizing

Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med. 2021; 384(3):238–51. https://doi.org/10.

1056/NEJMoa2035002 PMID: 33332778

28. Chen A, Zhao Z, Hou W, Singer AJ, Li H, Duong TQ. Time-to-Death Longitudinal Characterization of

Clinical Variables and Longitudinal Prediction of Mortality in COVID-19 Patients: A Two-Center Study.

Front Med (Lausanne). 2021; 8:661940. https://doi.org/10.3389/fmed.2021.661940 PMID: 33996864

29. Gisby J, Clarke CL, Medjeral-Thomas N, Malik TH, Papadaki A, Mortimer PM, et al. Longitudinal proteo-

mic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death.

Elife. 2021; 10. https://doi.org/10.7554/eLife.64827 PMID: 33704068

30. Zeng HL, Lu QB, Yang Q, Wang X, Yue DY, Zhang LK, et al. Longitudinal Profile of Laboratory Parame-

ters and Their Application in the Prediction for Fatal Outcome Among Patients Infected With SARS-

CoV-2: A Retrospective Cohort Study. Clin Infect Dis. 2021; 72(4):626–33. https://doi.org/10.1093/cid/

ciaa574 PMID: 33048116

31. Zeng Z, Yu H, Chen H, Qi W, Chen L, Chen G, et al. Longitudinal changes of inflammatory parameters

and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan,

China. Crit Care. 2020; 24(1):525. https://doi.org/10.1186/s13054-020-03255-0 PMID: 32854750

32. Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, et al. Longitudinal COVID-19 profiling associates IL-1RA

and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020; 5(13). https://doi.org/

10.1172/jci.insight.139834 PMID: 32501293

33. Woo MS, Haag F, Nierhaus A, Jarczak D, Roedl K, Mayer C, et al. Multi-dimensional and longitudinal

systems profiling reveals predictive pattern of severe COVID-19. iScience. 2021; 24(7):102752. https://

doi.org/10.1016/j.isci.2021.102752 PMID: 34179733

34. Villegas M, Gonzalez-Agirre A, Gutiérrez-Fandiño A, Armengol-Estapé J, Carrino CP, Fernández DP,
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